
1-1

Machine learning

Lecture 1

Lecturer: Haim Permuter Scribe: Gal Rattner

In this lecture we introduce machine learning, define the relevant notations, and

examine the popular machine learning algorithm K-Nearest Neighbors. Most of the

material for this lecture was taken from the work of Cover and Hart on K-NN [1].

I. INTRODUCTION TO MACHINE LEARNING

The goal of machine learning is to program computers to use training data or gained

experience to solve given problems. We can broadly say that a machine learns whenever

it changes its structure, program or data such that its future expected performance is

improved. Many successful applications of machine learning already exist today including

systems that predict stock prices, face recognition technology incorporated in digital

cameras or facebook, speech recognition in Google Assistance, Siri or Alexa, safety

systems in car (e.g., Mobiley), advertising on the web, auto-completion text, and ”spam”

mail detection programs. Recently, we are also experiencing a huge success in Generative

AI such Chat-GPT, Claude, Gemini and more. Today, machine learning is entering every

engineering field that you may think about and is expected to have a great impact in the

next decades since the technology is progressing significantly.

A. Type of learning problems

The type of problems that we try to solve by machine learning can be divided into

two categories:

• Classification problems: Given stochastic observation x, classification is the prob-

lem of associating x with one class from among a set of classes.

For example:

- Associating a recorded speech with the speaker (speaker recognition).

- Associating an image with a letter (digit recognition).

1-2

- Associating an image with an object, e.g., recognizing a car (object recognition).

• Regression problems: Given stochastic observation x, regression associates a

continuous value with x.

For example:

- Associating a price with a house for sale, using its location, size and other

parameters.

- Associating a price prediction with a stock, using its price over last few days,

the most recent financial reports of the company, etc.

- Forecasting temperatures based on the time of the year, measurements over the

most recent days, etc.

In both regression and classification problems, we associate a label with a given

test sample. In a classification problem, the label is chosen from a finite set, e.g.,

{1, 2, . . . ,M} where |M| < ∞. On the other hand, the label in a regression problem

is a continuous value that has a defined sorting order, and one can define the distance

between two different elements.

B. Training/Validation/Test Data

Classification and regression are both based on a training session comprising a set

of training samples xi and each sample has it’s own fixed label li. The success rate

of the classification is then evaluated with a set of validation samples {x1, x2, . . . , xn}

whose properties are similar to those of the training set. The evaluation of the classifi-

cation/regression is done by comparing the original labels (using a loss function that we

will explain later in the lecture) with the labels associated by the trained model. Usually,

the learning model might still be changed (especially hyper-parameters, like the size or

depth of the machine learning model) during the validation and therefore there is a need

for final testing of the machine learning system on an additional data called the test data,

where the model can not be changed.

1-3

C. Types of learning

Machine learning methods can be categorized into three main types of the data that it

needs to learn from.

Supervised - In the training stage, the system is presented with labels for each sample.

Sample-label couples {(x1, l1), (x2, l2), . . . , (xN , lN)} are given to the system along with

the unlabeled test set {y1, y2, . . . , yM}. The system then associates labels with the test

samples according to the statistic model based on the training set. The supervised learning

system checks the correctness of its associating process by comparing the association

results with the original test labels. Supervised learning is often used in classification

and regression problems, for instance, in digit recognition, house price estimations, etc.

Unsupervised - In the training stage, the system is not given any fixed labels as

inputs, and as such, the system must define relevant labels. This usually requires that the

system learn the distribution of the sample set. Unsupervised learning is often used for

segmentation, for instance, edge detection in image processing tasks, etc.

Reinforcement learning - An intermediate stage to supervised and unsupervised learn-

ing, reinforcement learning entails the system learning “on the fly” through its experience.

For each attempt, the system receives some reward and then determines whether the

attempt was a failure or a success. The system thus gains experience and learns which of

its attempts were “good” by comparing between the rewards it received for the attempts.

Reinforcement learning is used to train computers to be experts in defined tasks, for

example, playing a game (e.g. https://www.youtube.com/watch?v=V1eYniJ0Rnk).

In this course, we will focus on supervised learning, though unsupervised learning

often constitutes an integral step in training the supervised model. We have a whole

course only on Reinforcement learning (http://www.ee.bgu.ac.il/∼haimp/RL/index.html).

D. Types of models

Generative model: The learning model is probabilistic and it models the joint

distribution of the samples and the labels, i.e., P (x, l). It is called generative since often

one can use it in order to generate data similar to the one it learns from. An example of

generative model is the Gaussian Mixture Model that we learn later in the course.

https://www.youtube.com/watch?v=V1eYniJ0Rnk
http://www.ee.bgu.ac.il/~haimp/RL/index.html

1-4

Discriminative model: The learning model learns to discriminate the feature x into

labels l, namely, it learns a mapping φ : x 7→ l, or the conditional probability P (l|x) but

not the joint as in the generative model. Discriminative model are using for supervised

learning and very rarely for unsupervised learning. Examples of discriminative models

that we will learn in the course are Logistic regression model and Neural network model.

E. Generative AI

Currently, the biggest success is Generative AI where we actually generate new data

based on some input, like text or sound or image. This task uses generative models and

it train them in a sophisticated way that does not require additional labels. For instance,

in text it builds a model that predict the next word and it generate text by predicting

each time the next word. In images it build a model that de-noise images where noise

was added till the point that it generate images from pure noise.

II. NOTATION

Throughout the course we will use the following notation:

• X - random variable

• X - alphabet of X . The alphabet of X is the set of all possible outcomes. For

instance, if X is a binary random variable then X = {0, 1}. We denote sets by

calligraphic letters, such as A,B,

• x - an observation or a specific value. Clearly, x ∈ X .

• PX(x) - the probability that the random variable X gets the value x, i.e., PX(x) =

Pr{X = x}.

• PX or PX(·)- denotes the whole vector of probabilities, also known as probability

mass function (pmf).

• P (x) - this is a short notation for PX(x).

• E[X] - expectation, i.e.,

E[X] ,
∑

x∈X

xP (x) (1)

1-5

Similarly E[g(X)] is

E[g(X)] ,
∑

x∈X

g(x)P (x) (2)

III. PROBLEM SETTINGS AND CRITERIA DECISION (MAP, MLE) WHEN

PROBABILITY IS KNOWN

Let {η1, η2, . . . , ηM} , ηi > 0 ∀i ,
∑

ηi = 1 be the prior probability of the M classes,

and fi(x) be the probability density of each class at x. The distribution of X is thus:

Class P (x|class)

X ∼ η1 = P (Class = 1) f1(x) = f(x|Class = 1)

η2 = P (Class = 2) f2(x) = f(x|Class = 2)
...

...

ηM = P (Class = M) fM(x) = f(x|Class = M).

Definition 1 (Loss Function) Let X be a random variable with the classes set

{1, 2, . . . , n}. The loss function L(i, j) is the loss incurred by associating the observation

to class j when in fact it belongs to class i ,∀i, j ∈ {1, 2, . . . , n}.

Example 1 (Right/wrong loss function) Consider M=2, and the loss function is the

right/wrong function, such that a correct association yields no loss and an incorrect

association, or an error, yields a loss of 1. The loss matrix in this case is:

L =




0 1

1 0



 .

For the case of right/wrong loss function, we notice that in the case of an error, the

loss always counts as 1, while a correct association counts as 0 loss. The loss matrix

is therefore the 0-1 matrix of M ×M size. For example, consider the right/wrong case

were M = 3, then

L =








0 1 1

1 0 1

1 1 0








.

1-6

In general (not right/wrong case), a loss matrix can also be asymmetric, for instance,

L(1, 2) > L(2, 1). In this case loss matrix is warranted when the system is tasked with

deciding whether a given person is a terrorist based on a recorded phone call. Failure to

identify a terrorist may result in much greater loss than falsely deciding that an innocent

person is a terrorist. Therefore, we can expect the representative loss matrix to be in

many cases asymmetric.

Let us recall the joint probability equation

P (a, b) = P (a) · P (b|a). (3)

We can describe P (x) as the sum of the joint probability over all the alphabet of X , and

using eq. (3) we get

P (x) =
M∑

j=1

P (j, x) =
M∑

j=1

P (j)P (x|j) =
M∑

j=1

ηjfj(x). (4)

The probability that X belongs to class i, ∀i ∈ {1, 2, . . . ,M} given the samples x, is the

posterior probability η̂i(x):

η̂i(x) = P (class = i|x) =
P (class = i, x)

P (x)
=

P (i)P (x|i)

P (x)
=

ηifi(x)
∑M

j=1 ηjfj(x)
, (5)

We can finally sort the class probabilities in vectors. These include the prior probability

vector:

P (class) = [η1, η2, . . . , ηM] , (6)

and the Posterior probability vector:

P (class|x) =

[

η1f1(x)
∑M

j=1 ηjfj(x)
,

η2f2(x)
∑M

j=1 ηjfj(x)
, . . . ,

ηMfM(x)
∑M

j=1 ηjfj(x)

]

. (7)

Definition 2 (Conditional loss) The conditional loss denoted by rj(x) is the loss in-

curred by associating observation x with class j, then:

rj(x) = E [L(I, j) | X = x] =
∑

i

P (class = i|x)L(i, j) =
M∑

i=1

η̂i(x)L(i, j). (8)

1-7

Because our goal is to minimize the conditional loss, we therefore define r∗(x) and R∗

that is the one that corresponds for the minimum choice of class j ∈ {1, 2, . . . , N}.

Definition 3 (Conditional Bayes risk) The conditional Bayes risk denoted by r∗(x), is

the loss incurred by associating x with class j that has the lowest cost out of all classes,

i.e.

r∗(x) , min
j
{rj(x)} = min

j

{
M∑

i=1

η̂i(x)L(i, j)

}

. (9)

Definition 4 (Bayes risk) The Bayes risk denoted by R∗ is the resulting overall mini-

mum expected risk, i.e,

R∗ , E [r∗(X)] , (10)

where the expectation is described in terms of the compound density function

f(x) =
∑

i

ηifi(x). (11)

Example 2 (Decision due to minimum loss) Consider the next loss matrix L, where

all failures have the same loss value:

L =













0 1 1 . . . 1

1 0 1 . . . 1

1 1 0 . . . 1
...

. . .
...

1 1 . . . 1 0













.

Then for each class j ∈ {1, 2, . . . , N} the conditional loss is

rj(x) =
∑

i

η̂i(x) · (1− δ(i, j)) = 1− η̂j(x), (12)

and therefore, by choosing the class that producing the minimum loss, we will minimize

the Bayes risk, i.e.,

j = argmax{η̂j(x)} = argmax{P (j|x)}. (13)

1-8

Minimizing the Bayes risk for the loss function of right/wrong yields the decision rule

given in (13), which is also known as the Maximum a Posteriori (MAP) rule and is

formally defined in the next definition.

Definition 5 (MAP) Maximum a Posteriori is the estimation method for a random

variable J given observations X = x. The MAP estimator denoted by j∗ is chosen

according to the maximum value of the posterior probability function PJ |X(j|x) i.e.,

j∗ = argmax
j

P (j|x) = argmax
j

ηjfj(x). (14)

In our case, the posterior probability function is the vector

PJ |X =

[

η1f1(x)
∑M

j=1 ηjfj(x)
,

η2f2(x)
∑M

j=1 ηjfj(x)
, . . . ,

ηMfM (x)
∑M

j=1 ηjfj(x)

]

. (15)

Given that the divisors are equal for all the elements, the maximum vector element is

equal to argmaxj ηjfj(x).

Now, for the case in which η1 = η2 = · · · = ηM , meaning that all classes have the

same prior probability, using the MAP method is similar to choosing the maximum of

only fj(x), i.e.,

argmaxP (j|x) = argmax
j

fj(x) = argmax
j

P (x|j), (16)

and we can refer to another decision method, Maximum Likelihood Estimation (MLE).

Definition 6 (MLE) Maximum Likelihood Estimation is the method of estimating a

random variable J due to observations X = x, by choosing estimator j∗ to be the

element with maximum conditional probability density function fj(x) at point x, i.e.

j∗ = argmax
j

P (x|j) = argmax
j

fj(x). (17)

Example 3 (Two Gaussian distributed classes) Given two classes distributed normally

over two dimensions. Using MLE, we choose the class that has the higher probability

density function value at point x. Using this method entails an obligated error probability,

in this case presented by the area trapped under the two Gaussian graphs:

1-9

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.5

0

0.5

1

1.5

2

↑↑

x

η
if

i(
x
) η2f2(x)

η1f1(x)

Risk caused by choosing j∗ = 2
while j = 1

Risk caused by choosing j∗ = 1
while j = 2

Class 1 is chosen
︸ ︷︷ ︸

j∗ = 1

Class 2 is chosen
︸ ︷︷ ︸

j∗ = 2

Figure 1. The total area trapped under the overlap between the two Gaussians ovelap (marked in color) is the total

obligated error probability.

Now we can calculate the overall risk by integrating over min{η̂1(x)f1(x), η̂2(x)f2(x)}

to obtain the trapped area:

R∗ = E [r∗(X)]

=

∫

r∗(x)f(x) dx

=

∫

η1f1(x) > η2f2(x)

η̂2(x)f(x) dx+

∫

η1f1(x) < η2f2(x)

η̂1(x)f(x) dx

=

∫

η1f1(x) > η2f2(x)

η2f2(x) dx+

∫

η1f1(x) < η2f2(x)

η1f1(x) dx.

(18)

CHOOSING BEST CLASSIFIER WHEN PROBABILITY IS UNKNOWN BUT WE HAVE

SAMPLES VIA EMPIRICAL RISK MINIMIZATION (ERM)

In the previous section we defined the conditional Bayes risk r∗(x) in Eq. (9) and

the Bayes risk R = E[r∗(X)] in (10), which are optimal but one need to know the

probabilities of the classes i.e., ηi and the conditional probability fi(x) for all possible i

and x. In many cases, we have several classifiers (or a set of classifiers) which can also

be called hypothesis. The hypothesis set may not include the optimal one, namely, the

1-10

Bayes classifier that we saw in the previous subsection. The ERM idea is a very simple

idea that tells us which hypothesis to choose from the set of hypotheses.

For each classifier/hypothesis h let’s define a Risk

R(h) = E[L(h(X), Y)], (19)

where L(·, ·) is the loss function (as defined in previous subsection in Def. 1) and y is

the label associated with x. In general, we would like to choose the classifier/hypothesis

h from the possible set H that minimize the risk, i.e.,

h∗ = min
h∈H

R(h). (20)

However, in order to compute the risk for specific hypotheses h, i.e., R(h), one need

to know the joint probability p(x, y) for all possible samples, x and labels, y. In practice,

the joint probability p(x, y), is unknown (this situation is called as agnostic learning).

However, one can assume that we have samples and labels {xi, yi}
n
i=1 drawn from the

joint p(x, y). The set of samples that are available is called the training set. The empirical

risk of a specific classifier h is defined as

R(n)
emp(h) =

1

n

n∑

i=1

L(h(xi), Yi) (21)

and the minimum empirical risk idea is

ĥ = min
h∈H

R(n)
emp(h). (22)

Assuming {xi, yi}
n
i=1 are i.i.d., (or at least stationary and ergodic) then by the law of

large numbers limn→∞R
(n)
emp(h) = R(h) with probability 1, hence the minimum empirical

risk convergence to the minimum risk if the number of samples is large enough.

Summary of the ERM idea: The ERM idea is very simple and extremely useful. We

have a set of classifiers/hypothesis H and a set of samples (a.k.a tanning set). The ERM

principle tells us to choose the classifier that minimize the emprical risk, i.e., Eq. (22).

1-11

IV. K-NEAREST NEIGHBOR MODEL

Definition 7 (KNN) K-Nearest Neighbor is a basic classification algorithm, that uses a

predefined, classified finite training set and a defined distance function to estimate the

class of a test element. Here is a description of the setting and the algorithm:

Training set: (x1, θ1) (x2, θ2) . . . (xn, θn)

Test: x

1-NN Algorithm: Find x′ so that

d(x, x′) ≤ d(x, xi) ∀ i = 1, . . . , n

where θ′ is the label of x′. The algorithm decides that the label of x is as the label of x′,

i.e., θ′. This algorithm can be extended to k − NN by taking the label of the majority

of k neighbours.

The prior probability to receive the element from class i is again ηi:

η1 = P (θ = 1)

η2 = P (θ = 2)

...

ηn = P (θ = n)

The term L(θ, θ′n) is the right/wrong loss function.

Considering that x ∼ i.i.d and P (x|θ = i) = fi(x), we get the joint probability to

be:

P (x, θ, x1, θ1, . . . , xn, θn) = P (θ)P (x|θ)P (θ1)P (x1|θ2)P (θ2)P (x2|θ2) · · · (23)

We define the n-sample Nearest Neighbor procedure risk to be (n holdss for the training

number of samples) :

R(n) = E [L(θ, θ′n)] (24)

And for a large number of training samples n, we define R to be the NN risk:

R = lim
n→∞

R(n) (25)

1-12

Theorem 1 (Nearest neighbor risk bounds) Assume that there are two possible

classes θ = 1, 2,and that x with probability 1 is either a continuous point of f1 or

f2 or a non-zero probability measure. The overall 1-NN risk R then has the bounds

R∗ ≤ R ≤ 2R∗ · (1− R∗), (26)

where R∗ is the minimum risk for right/wrong loss function, i.e., the Bayes risk which

is obtained by MAP when f1 and f2 are known.

In the next part of this lecture, we will use a lemma and the definitions given above

to show that these bounds hold. Before we get to the proof, note that the Bayes risk R∗

can only get values in the section
[
0, 1

2

]
, so that 0 ≤ R∗ ≤ R ≤ 2R∗(1 − R∗) ≤ 1

2
. In

particular, for the edge cases, we get that R∗ = 0 if and only if R = 0, and that R∗ = 1
2

if and only if R = 1
2
.

proof: Under the same assumptions on f1, f2 and x as in Theorem 1, the conditional

NN risk r(x, x′
n) is then given by:

r(x, x′
n) = E [L(θ, θ′n)|xn, x

′
n]

= P (θ = 1, θ′n = 2|x, x′
n) + P (θ = 2, θ′n = 1|x, x′

n)

= P (θ = 1|x) · P (θ′n = 2|x′
n) + P (θ = 2|x) · P (θ′n = 1|x′

n).,

(27)

where we use the conditional independence of θ and θ′n to open the phrase.

Exercise 1 Prove the equation used above: P (θ, θ′n|x, x
′
n) = P (θ|x) · P (θ′n|x

′
n)

Lemma 1 (Convergence of the nearest neighbor) : Under the assumption on f1, f2

that x with probability 1 is either a continuous point of f1, f2 or a non-zero probability

measure. x′
n denotes the nearest neighbor to x within the set {x1, x2, . . . , xn}. Then we

get limn→∞ x′
n = x, convergence of the nearest neighbor to x with high probability.

proof: Let Sx(r), r > 0 be the sphere of radius r centered at x, and d(·) is the metric

defined on X . Considering the case where Sx(r), r > 0 has a non-zero probability

measure, then for any δ > 0

P{ min
k=1,2,...,n

d(x, xk) ≥ δ} = (1− P (Sx(δ)))
n → 0. (28)

1-13

The distance of the nearest neighbor x′
n from x decreases monotonically with the increase

in k. �

We can now use the fact that limn→∞ x′
n = x with probability one to show that the

conditional NN risk r(x, x′
n) converges to the limit 2r∗(x)(1− r∗(x)). For large numbers

of training samples n, we get

lim
n→∞

r(x, x′
n)

(a)
= lim

n→∞
(η̂1(x)η̂2(x

′
n) + η̂2(x)η̂1(x

′
n)) (29a)

(b)
= 2 · η̂1(x) · η̂2(x) (29b)

(c)
= 2η̂1(x)(1− η̂1(x)) (29c)

(d)
= 2r∗(x)(1− r∗(x)), (29d)

where:

(a) holds using equation (27).

(b) holds since x′
n converge to x.

(c) holds since η̂1(x), η̂2(x) are symmetric and η̂2(x) = 1− η̂1(x).

(d) holds since r∗(x) = min(η̂1(x), η̂2(x)) = min(η̂1(x), 1− η̂1(x)).

Recalling equation (8) and by the total expectation law, we get

E [r(x, x′
n)] = E [E [L(θ, θ′n)|x, x

′
n]] = E [L(θ, θ′n)] . (30)

Now R is the limit of the expectation of r(x, x′
n), and we can use the fact that r(x, x′

n)

is bounded to switch the order of expectation and the limit to get

R = lim
n→∞

E [r(x, x′
n)]

r(x,x′

n
)<1

= E

[

lim
n→∞

r(x, x′
n)
]

. (31)

From the dominant convergence theorem we get that

R = E [2η1(x)η2(x)] = E [2r∗(x)(1− r∗(x))] , (32)

and now we can write equation (31) as follows:

R = E[r(x)] (33a)

= E[2r∗(x)(1 − r∗(x))] (33b)

= E[r∗(x) + r∗(x)(1− 2r∗(x))] (33c)

1-14

(a)
= R∗ + E[r∗(x)(1− 2r∗(x))] (33d)

(b)

≥ R∗, (33e)

where:

(a) holds for the linearity of the expectation.

(b) holds since r∗ ∈ [0, 1
2
] and the expression inside the expectation is non negative over

this section, and equality is achieved only if r∗(x)(1− 2r∗(x)) = 0.

Using the first part of the equation above and the fact that R∗ is the expectation of r∗,

and that V ar(r∗(x)) ≥ 0 we can then write

R = E[2r∗(x)(1− r∗(x))]

= 2R∗(1− R∗)− 2V ar(r∗(x))

≤ 2R∗(1−R∗),

(34)

and

R∗ = E [r∗(x)] (35a)

(a)

≤ E [2r∗(x)(1 − r∗(x))] (35b)

(b)

≤ 2R∗(1− R∗), (35c)

where:

(a) holds from equation (33e).

(b) holds since r∗(x) ≤ 1
2
.

To conclude, we collect equations (33),(34) to obtain the bounds of the overall NN

risk R(n):

R∗ ≤ R ≤ 2R∗(1− R∗). (36)

�

REFERENCES

[1] T.M. Cover and P.E. Hart. Nearest Neighbor Pattern Classification. IEEE, 1967.

	Introduction to Machine Learning
	Type of learning problems
	Training/Validation/Test Data
	Types of learning
	Types of models
	Generative AI

	Notation
	Problem settings and criteria decision (MAP, MLE) when probability is known
	K-Nearest Neighbor Model
	References

